Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest.

نویسندگان

  • N D Holland
  • G Panganiban
  • E L Henyey
  • L Z Holland
چکیده

The dynamic expression patterns of the single amphioxus Distal-less homolog (AmphiDll) during development are consistent with successive roles of this gene in global regionalization of the ectoderm, establishment of the dorsoventral axis, specification of migratory epidermal cells early in neurulation and the specification of forebrain. Such a multiplicity of Distal-less functions probably represents an ancestral chordate condition and, during craniate evolution, when this gene diversified into a family of six or so members, the original functions evidently tended to be parcelled out among the descendant genes. In the amphioxus gastrula, AmphiDll is expressed throughout the animal hemisphere (presumptive ectoderm), but is soon downregulated dorsally (in the presumptive neural plate). During early neurulation, AmphiDll-expressing epidermal cells flanking the neural plate extend lamellipodia, appear to migrate over it and meet mid-dorsally. Midway in neurulation, cells near the anterior end of the neural plate begin expressing AmphiDll and, as neurulation terminates, these cells are incorporated into the dorsal part of the neural tube, which forms by a curling of the neural plate. This group of AmphiDll-expressing neural cells and a second group expressing the gene a little later and even more anteriorly in the neural tube demarcate a region that comprises the anterior three/fourths of the cerebral vesicle; this region of the amphioxus neural tube, as judged by neural expression domains of craniate Distal-less-related genes, is evidently homologous to the craniate forebrain. Our results suggest that craniates evolved from an amphioxus-like creature that had the beginnings of a forebrain and possibly a precursor of neural crest - namely, the cell population leading the epidermal overgrowth of the neural plate during early neurulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amphioxus molecular biology: insights into vertebrate evolution and developmental mechanisms1

The cephalochordate amphioxus is the best available proxy for the last common invertebrate ancestor of the vertebrates. During the last decade, the developmental genetics of amphioxus have been extensively examined for insights into the evolutionary origin and early evolution of the vertebrates. Comparisons between expression domains of homologous genes in amphioxus and vertebrates have strengt...

متن کامل

A gene catalogue of the amphioxus nervous system

The elaboration of extremely complex nervous systems is a major success of evolution. However, at the dawn of the post-genomic era, few data have helped yet to unravel how a nervous system develops and evolves to complexity. On the evolutionary road to vertebrates, amphioxus occupies a key position to tackle this exciting issue. Its "simple" nervous system basically consists of a dorsal nerve c...

متن کامل

Origins and plasticity of neural crest cells and their roles in jaw and craniofacial evolution.

The vertebrate head is a complex assemblage of cranial specializations, including the central and peripheral nervous systems, viscero- and neurocranium, musculature and connective tissue. The primary differences that exist between vertebrates and other chordates relate to their craniofacial organization. Therefore, evolution of the head is considered fundamental to the origins of vertebrates (G...

متن کامل

Id expression in amphioxus and lamprey highlights the role of gene cooption during neural crest evolution.

Neural crest cells are unique to vertebrates and generate many of the adult structures that differentiate them from their closest invertebrate relatives, the cephalochordates. Id genes are robust markers of neural crest cells at all stages of development. We compared Id gene expression in amphioxus and lamprey to ask if cephalochordates deploy Id genes at the neural plate border and dorsal neur...

متن کامل

Chordate evolution and the origin of craniates: an old brain in a new head.

The earliest craniates achieved a unique condition among bilaterally symmetrical animals: they possessed enlarged, elaborated brains with paired sense organs and unique derivatives of neural crest and placodal tissues, including peripheral sensory ganglia, visceral arches, and head skeleton. The craniate sister taxon, cephalochordates, has rostral portions of the neuraxis that are homologous to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 122 9  شماره 

صفحات  -

تاریخ انتشار 1996